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Abstract

Small amounts of impurities normally present within crystalline solid materials tend to segregate near the surfaces
of pores. A mathematical model for the surface segregation kinetics is proposed. An analytical solution is obtained
for the evolution of the impurity's surface concentration, induced by an instantaneous change of the material's

temperature. For times, signi®cantly exceeding the characteristic di�usion time, when the segregation process is
controlled by the bulk di�usion, the segregation kinetic curve reduces to the McLean's expression. For times, which
are short compared to the reaction time, segregation is shown to be entirely controlled by the surface reaction

kinetics. The e�ect of the grain boundary parameters on the segregation of impurities on surfaces of small pores is
studied. The analyses are performed for grains and pores of plane, cylindrical and spherical shapes. The results
calculated for surface segregation kinetics are ®tted with experimental data for segregation of silver in copper and

sulfur in Fe±6at.%Si, available from the literature. This allowed calculation of the surface reaction constant and the
segregation length, appearing in the model. These quantities showed the Arrhenius temperature dependence. 7 2000
Published by Elsevier Science Ltd.

1. Introduction

Surface and grain boundary segregation processes

a�ect mechanical, electrical and thermophysical prop-

erties of metals and ceramic materials [1,2]. The segre-

gation of impurities in the grain boundary regions of

ceramic and composite materials a�ects their transport

properties, in particular, the di�usivity of impurities

atoms, electrical and thermal conductivity [3]. When

the temperature of a ceramic specimen is changed, the

concentration Cs of a segregated substance on surfaces

of small pores prevailing in the grain boundary region
changes very slowly, long time after a thermal equi-
librium has been established. This slow mass redistri-

bution process brings about a comparable temporal
change of the thermal conductivity in vacuum [4]. In
order to rationalize such a behavior of thermophysical
properties of ceramic materials, a physico-mathemat-

ical model of surface segregation kinetics on small
pores is needed.
Di�erent models for surface segregation kinetics

have been proposed in the literature [5,6]. The rate
of segregation of impurities on a surface of a crys-
tal grain/pore is controlled by two processes: (i) sur-

face reaction, governing the exchange rate between
the bulk and the surface regions; (ii) bulk di�usion
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of impurities, which determines the rate at which

the inhomogeneous volumetric concentration distri-

bution is transported in the bulk.

McLean [1,6] has proposed a model for surface seg-

regation kinetics, in which bulk di�usion was assumed

to be the only mechanism, controlling the rate of seg-

regation±desegregation of impurities. This model is

based on the solution of the di�usion equation within

a semi-in®nite region subject to the condition of mass

conservation at the surface. A linear relationship was

assumed between the surface concentration, Cs, and

the ``near-surface'' volumetric concentration, Cjx�0
(Fig. 1a). As a result, the following expression for the

surface concentration was obtained for zero initial sur-

face concentration [6]:

Cs�t� � aC1

"
1ÿ exp

�
Dt

a 2d 2

�
erfc

�
Dt

a 2d 2

�1=2
#
, �1�

where d is the surface layer thickness, D is the bulk dif-
fusivity coe�cient, C1 is the bulk concentration of
impurities far from the surface, and the ``enrichment

factor'' a is the ratio between the equilibrium surface
concentration and the bulk concentration of impuri-
ties.

However, numerous experimental data could not be
®tted by McLean's expression (1) [7,6]. This suggests
that McLean's model is oversimpli®ed. The source of

Nomenclature

a pore size
�a � a=gd nondimensional pore size
b thickness of the near surface

region
�b � b=d� parameter
ĉ� �x, s�, ĉ��r, s�, ĉs�s� Laplace transforms of the con-

centrations
cs � CsÿCsi

Cs0ÿCsi
nondimensional surface concen-
tration

c � CÿC1
Cs0ÿCsi

nondimensional bulk concen-
tration

C concentration of the impurities
in the bulk phase

Cs concentration of a segregated
substance on surfaces

C1 bulk concentration of impurities

far from the surface
Ceq

s equilibrium surface coverage
C eq equilibrium surface concen-

tration
Csi initial surface coverage
Cs0 surface concentration derived

from Eq. (11)
Ci � C eq�Csi, T � bulk concentration
D bulk di�usivity coe�cient
Esegr segregation energy

Dns di�usion coe�cient in the near
surface region

I0 and I1 modi®ed Bessel functions of the

®rst kind
K0 characteristic value of K (at

large temperatures)

K0 and K1 modi®ed Bessel functions of the
second kind

K surface reaction coe�cient
L characteristic size of the solid

body
�L � L=gd nondimensional size of the solid

body

n = 1, 2, 3 dimensionality parameter
n unit normal vector directed

towards the bulk

p1, p2 parameters, see Eq. (23)
�r � r

d�
, nondimensional coordinate

�x� x
d�
� x

gd nondimensional coordinate

tsegr � d 2
� =D characteristic segregation time

QK characteristic energy governing
temperature dependence of K

R gas constant

s Laplace variable
t time
T absolute temperature

w function, see Eq. (24)
x, r coordinates measured from the

surface

Greek symbols
a enrichment factor

b reaction rate for two-dimen-
sional growth

g di�erential enrichment coef-
®cient

g1 parameter, see Eq. (37)
d layer thickness,
d� � gd length scale of segregation

d�0 characteristic segregation thick-
ness

s � �������������
D=Dns

p
parameter

k reaction rate constant
m � D=Kd� surface DamkoÈ hler group
t � t

tsegr
� tD

d 2
�

nondimensional time
j�s� function, see Eq. (A3)
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oversimpli®cation is the assumption that no resistance
to the bulk-surface ¯ux of segregated substance is

exerted by the surface.
In the case of very strong segregation, Crank's sol-

ution [8] can be employed for describing the segre-

gation kinetics [6,9]. This model is based on the
di�usion equation in semi-in®nite space, subject to
mass conservation condition at the surface and con-

dition of ideal sink near the surface: C�x � 0� � 0: As
a result one obtains the following time dependence of
the surface concentration of impurities:

Cs�t� � 2

d
C1

�
Dt

p

�1=2

: �2�

This expression can be derived from the McLean for-

mula (1) at t� a 2d 2=D, and is valid for low surface
coverage.

McLean's model is based on a linear relationship
between the surface and near-surface impurities' con-
centrations. Rowlands and Woodruf [10] attempted to

improve this model by expressing the condition of
local equilibrium between the surface and near-surface
layer in the form of a generally nonlinear segregation

isotherm. However, both McLean's model and the
model of Rowlands and Woodruf are not valid in
cases, where segregation is governed by the kinetics of

the surface reaction. As such, both models do not
account for the surface reaction rate.
The surface reaction rate has been accounted for in

reaction-rate limited models [11±13,6]. A ®rst-order

reaction has been proposed at the surface, i.e. the rate
of change of the surface concentration of impurities is
proportional to the di�erence between the equilibrium

and the current surface concentration. As a result, the
following expression for evolution of surface concen-
tration was obtained [6]:

Cs�t� � aC�1ÿ eÿkt �, �3�

where k is the reaction rate constant and aC is the sat-
uration concentration. This approach describes physi-
cal situations where surface concentration kinetics is

controlled by the reaction rate. It is a case for certain
class of solid solutions, for example, for carbon dis-
solved in tungsten [11,6], where the bulk di�usion of

solute atoms is more rapid than the migration of solute
atoms from the bulk phase into the surface. This mi-
gration is determined by the rate at which the atoms

pass through the surface. Such reaction-rate limited
model cannot adequately describe physical situations,
where bulk di�usion a�ects the segregation process.
A generalized model for segregation kinetics is

needed, which accounts for both the bulk di�usion
and the surface reaction mechanisms and can ade-
quately describe the cases, where these two mechan-

isms coexist. Such a model was developed by du
Plessis and van Wyk [14], du Plessis [6]. It accounts for
the bulk di�usion, as well as for the surface resistance

(energy barrier) to migration of impurities' atoms from
the bulk to the surface. In this model, a semi-in®nite
region is divided into layers of equal size, the ®rst of
which was related to the surface, and all others were

related to the bulk. The mass ¯ux between two ad-
jacent layers was assumed to be proportional to the
di�erence between impurities' chemical potentials pre-

vailing at these layers, to the concentration of species
and their mobility. The rate equation for impurities'
concentration was formulated for each layer, and the

resulting system of ordinary di�erential equations was
solved numerically.
Our work is motivated by the analysis of heat trans-

Fig. 1. (a) Plane geometry for segregation kinetics modeling.

(b) Model for cylindrical or spherical grain. (c) Model of

cylindrical or spherical pore.
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fer in porous ceramic materials, characterized by com-
plex geometric structures and existence of small pores.

Thermophysical properties of porous ceramics depend
upon the segregation of impurities to the surfaces of
small pores, present at the grain boundaries [15,3,4].

The application of du Plessis' method for such systems
leads to computational di�culties, especially for a
complex microstructure, characteristic of oxide ceramic

materials.
Other models for segregation kinetics which are rel-

evant to this work include the models of Kristyan and

Giber [16], du Plessis et al. [16,17], and Bezuidenhout
et al. [19]. They possess limited ranges of applicability.
Bezuidenhout et al. [19] pointed out that neither of the
above kinetic equations (Eqs. (1)±(3)) satisfactorily

correlate the experimental data collected on segre-
gation of carbon to (110) surface of a Fe±10at.%Si
single crystal. In their study they tried to ®t the data

by a model accounting to island formation [20] by
means of the equation

Cs�t� � C eq
s

�
1ÿ exp

�
ÿ 1

2
bt 2

��
, �4�

where C eq
s the equilibrium surface coverage and b is

the reaction rate for two-dimensional growth.
Several works have been devoted to kinetics of weak

surface segregation [16±18], which is de®ned as surface

segregation in systems characterized by low enrichment
factors. Only discrete (discontinuous) models requiring
numerical methods were proposed for this situation.
In this study, we propose an analytical linear model

for the surface segregation process. The speci®c goals
are investigation of (i) the segregation process on the
surfaces of micro and nanopores and (ii) the in¯uence

of the pore surface curvature and the material's grain
size on the segregation kinetics. Analytical solutions
are helpful for investigation of limiting cases, i.e. reac-

tion- and di�usion-controlled segregation regimes, and
also for determination of the applicability limits of the
existing analytical expressions. In the following section,
a linear model of segregation kinetics is developed and

used to obtain analytical expressions, describing tem-
poral evolution of Cs, caused by a sudden change of
thermodynamic conditions. This model accounts both

for the bulk di�usion and surface reaction mechanisms
of segregation kinetics and allows application to
various grains and pore geometries.

2. Segregation kinetics analysis based on the reaction±

di�usion model

In our analysis the material will be assumed to con-
sist of two phases: bulk and surface. The concentration
of the impurities in the bulk phase, C, can vary with

the spatial coordinate x or r and the time, t, and the
surface concentration of impurities, Cs, is a function of

time only. The simplest geometric system is the semi-
in®nite space (bulk), limited by a plane surface (b = 0,
L = 1 in Fig. 1a). In order to describe the kinetics of

impurities' segregation on the boundary of a single
grain, we shall use the following models: (i) slab
bounded by two in®nite parallel surfaces separated by

a distance 2L (Fig. 1a with b = 0, ®nite L ), (ii) cylin-
der or sphere of radius L (Fig. 1b). The analysis of
segregation of impurities at the individual pore's sur-

face will be performed with the help of cylindrical and
spherical pores models (Fig. 1c). When studying the
grain boundary segregation, it is important to account
for the di�usion in the near-surface region, which can

be signi®cantly faster or in some cases slower [16] than
the bulk di�usion of impurities [2]. For this purpose, a
third phase, or near-surface region of a thickness b can

be included, possessing a di�usion coe�cient Dns 6�D
(Fig. 1a, b > 0).
The bulk concentration of the impurities in the bulk

region is governed by the di�usion equation:

@C

@ t
� Dr 2C �5�

The equation of mass conservation at the surface

can be written as follows:

d
dCs

dt
� D n � rC, �6�

where n is the unit normal vector directed towards the
bulk.

Implicit in the above equations is the assumption
that the bulk variable x (appearing in Eq. (5)) is
viewed at a length scale L, greatly exceeding the thick-
ness d of the surface layer. Therefore, the bulk concen-

tration C(x) is determined using the lengthscale L
everywhere, even at the pore surface x = 0 (see
Fig. 1a). In contrast with this, a microscale concen-

tration, at the scale d may be independently de®ned
[21], i.e., c(x '), where x ' is the spatial coordinate
measured at the micro-length scale d: These concen-

trations are equal everywhere except in the region d
adjacent to the pore surface (see Fig. 1a). The limiting
value of c at x 040 serves as a formal de®nition of the
surface concentration Cs, i.e., c�x 040� � Cs: It clearly
di�ers from the ``outer'' limit C�x40�, which de®nes
the value of the bulk concentration on the pore-surface
C�x � 0�6�Cs: Note also that for very thin surface layer

d, a reduced surface concentration C 0s (per unit area) is
frequently de®ned [22]) as C 0s � dCs: For the sake of
clarity and comparison with di�erent models, we will

nevertheless use the ``volumetrically de®ned'' concen-
tration at the surface region, Cs:
To formulate an additional boundary condition, we
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assume that the impurities ¯ux from the bulk layer
adjacent to the surface to the surface itself is governed

by the local equilibrium between the instantaneous sur-
face and bulk concentrations of impurities. That is, the
rate of change of the surface concentration is pro-

portional to the di�erence between the instantaneous
concentration in the bulk adjacent to the surface,
Cjx�0, and the bulk concentration prevailing at equili-

brium with the instantaneous surface concentration Cs

at the current temperature T, i.e. C eq�Cs, T �:
dCs

dt
� dÿ1K

��C�x�0ÿC eq�Cs, T�
	
, �7�

where C is the bulk concentration of impurities, t is

the time variable, and x is the coordinate in the direc-
tion normal to the surface. The factor K is the surface
reaction coe�cient, which can be related to the `reac-

tion rate' k (Eq. (3)), and to the bulk-surface mobility
of impurities [6]. This factor may depend upon the sur-
face orientation with respect to crystal lattice axes and

can constitute one of the factors, leading to the di�er-
ence between the segregation rates to di�erently
oriented surfaces in the cases, where the segregation
kinetics is partly reaction controlled [9,23]. The func-

tion C eq�Cs, T � can be derived from the segregation
equation, for example, Bragg±Williams equation or
McLean's equation [1,6].

Eqs. (5)±(7) are to be solved for the bulk concen-
tration ®eld C�x, t� and the surface concentration his-
tory Cs�t� subject to the initial conditions

C�x, 0� � C1 �8�
and

Cs�0� � Csi, �9�
where C1 is the bulk concentration in®nitely far from
the surface, Csi is the initial surface coverage.
To facilitate the solution we will linearize the func-

tional dependence C eq�Cs, T � approximated in the fol-
lowing form:

C eq
appr � C� Cs ÿ Cs0

g
, �10�

where Cs0 is derived from

C1 � C eq�Cs0, T�, �11�

1

g
�
�
@C eq

@Cs

�
Cs0, T

: �12�

The last parameter, which can be called ``di�erential

enrichment coe�cient'', obviously depends on the
speci®c type of segregation isotherm, pertaining to the
given system. For example, for the Langmuir±McLean

isotherm

g � exp
ÿ
Esegr=RT

��
1� C1exp

ÿ
Esegr=RT

�� 2
� exp

�
Esegr

RT

��
1ÿ Cs0 � Cs0exp

�
ÿ Esegr

RT

�� 2

, �13�

where Esegr is the segregation energy and R is the gas
constant. The Bragg±Williams segregation isotherm [6]
yields a more complicated expression for g: Utilizing

the multilayer approach, based on the tight-binding
Ising model, allows the calculation of the equilibrium
segregation isotherm by solution of system of simul-

taneous equations [24], in which case g can be evalu-
ated numerically. In the case of multicomponent
alloys, g depends also on concentration of other im-

purities and on their modes of interaction [25]. This
parameter may also depend on the surface orientation
[26]. Generally, g is less than a by a factor �1ÿ C�
C exp�Esegr=RT ��: However, for small C and

C exp�Esegr=RT � these parameters have close values.
Linearization (10) is valid for small changes of Cs:

The limits of applicability of Eq. (10) are discussed in

Section 4.
Eqs. (5)±(12) constitute a well-posed problem that

can be formulated for any geometry. For simple ge-

ometries of a semi-in®nite plate, cylinder and sphere,
closed form solutions can be obtained by the Laplace
transform method (see Appendix A).

It must be noted that the model of semi-in®nite
space is a limiting case for the models of planar,
cylindrical or spherical grain in the limit
�L � L=gd41, and also for the model of cylindrical

or spherical pore in the limit �a � a=gd41:
Our model does not use the assumption of the local

equilibrium between the bulk and surface concen-

trations of impurities. We assume that the surface
resists to the free bulk-surface motion of the species,
necessary for establishment of this equilibrium. This

resistance is quanti®ed by the surface reaction coef-
®cient K via Eq. (7).
Below, an analytical treatment for the plane semi-in-

®nite slab model will be presented followed by a com-

parison with the ®nite grain and pore models.
The following nondimensional variables are intro-

duced:

�x � x

d�
� x

gd
, �r � r

d�
, t � t

tsegr

� tD

d 2
�
, �14a,b,c�

cs � Cs ÿ Csi

Cs0 ÿ Csi
, c � Cÿ C1

Cs0 ÿ Csi
, �15a,b�

where x is the spatial variable in the planar geometry,
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r is the spatial variable in the spherical case, d� � gd is
the characteristic length scale of segregation.

In terms of these new variables, the problem posed
for the semi-in®nite space adopts the form:

@c

@t
� @ 2c

@ �x 2
, tr0, �xr0, �16�

dcs
dt
� g

@c

@ �x
, t > 0, �x � 0, �17�

m
dcs
dt
� �cgÿ cs � 1�, t > 0, �x � 0, �18�

c � 0, cs � 0, t � 0, �xr0, �19a,b�

where the parameter

1

m
� Kd�

D
�20�

characterizes the relation between the surface reaction
and bulk di�usion rates, and can be interpreted as a
surface DamkoÈ hler group.
Eqs. (16)±(19) were solved by the Laplace transform

method. The following expressions for the evolution of
bulk and surface impurities' concentration were
obtained:

c � ÿ 1

g
��������������
1ÿ 4m
p exp

�
ÿ �x 2

4t

��
w

�
p1

���
t
p � �x

2
���
t
p

�

ÿ w

�
p2

���
t
p � �x

2
���
t
p

��
, �21�

cs � 1ÿ 1��������������
1ÿ 4m
p

"
w
ÿ
p1

���
t
p �

p1
ÿ w

ÿ
p2

���
t
p �

p2

#
, �22�

where

p1 �
ÿ
1ÿ ��������������

1ÿ 4m
p �
2m

, p2 �
ÿ
1� ��������������

1ÿ 4m
p �
2m

, �23�

w�z� � exp�z 2 �erfc�z�: �24�

If m� 1, the segregation kinetics is reaction controlled,
and Eq. (22) reduces to

cs � 1ÿ exp� ÿ t=m� � 1ÿ exp� ÿ tK=d� �, �25�

which is identical to Eq. (3) with k � K=d�: If, on the
contrary, m� 1, the process is controlled by the bulk
di�usion, and Eq. (22) reduces to

cs � 1ÿ exp�t�erfc�t1=2 �

� 1ÿ exp
ÿ
tD=g 2d 2

�
erfc

ÿ
tD=g 2d 2

�1=2
, �26�

which resembles Eq. (1) with enrichment ratio a substi-

tuted by g: These two expressions become identical
when a � g, i.e. when the equilibrium value of Cs

depends linearly on C.
When m01, neither of these mechanisms dominates

during the entire process. Attention will now be
focused at the asymptotic behavior of the surface seg-
regation kinetics. For short times �t� m or t� d�=K�
Eq. (22) simpli®es to Eq. (25), which points out at the
limiting role of the surface reaction on the segregation
kinetics. For long times �t� 1, t� d 2

� =D� the asymp-

totic behavior of Eq. (22) is described by Eq. (26). It
can be concluded that at the ®nal stage of the segre-
gation process the bulk di�usion rate plays the limiting

role.
Our reaction±di�usion model for segregation kin-

etics includes the results of McLean's and Rawlings±
du Plessis' models as asymptotics valid for di�usion-

controlled and reaction-controlled cases, respectively.
In order to determine the applicability range of the

hypothesis of in®nite source of impurities for descrip-

tion of the grain boundary segregation in ceramic ma-
terials, we shall analyze the segregation of impurities
on the edges of the slab (Fig. 1a, ®nite L ) and on the

surfaces of the cylinder and sphere (Fig. 1b).
The ultimate values of bulk and surface concen-

trations of impurities C�x, t41�6�C1 and
Cs�t41�6�Cs0 can be found from the solution of the

following system of equations written for a slab:

C�x, t41� � C� Cs�t41� ÿ Cs0

g
, �27�

2LC�x, t41� � 2dCs�t41� � 2LC� 2dCsi: �28�

Eq. (27) expresses the fact that at t41, the equi-
librium between the bulk and surface concentrations of

impurities at temperature T is reached. Eq. (28)
expresses conservation of impurities in the chosen
volume. These equations can be solved to yield:

C�x, t41� � C� Csi ÿ Cs0

g
ÿ
n� �L

� , �29�

Cs�t41� � Csi � Cs0 ÿ Csi

1� n= �L
, �30�

where n = 1, 2, 3 for parallel plate, cylindrical and

spherical grains, respectively and �L � L=d�:
One can see that, generally, the bulk concentration

level decreases as a result of segregation �Cs0 > Csi,
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because the impurities are pumped out of the bulk
onto the surface, and increases as a result of desegrega-

tion. Moreover, Csi < Cs�t41� < Cs0 in the case of
segregation, and Csi > Cs�t41� > Cs0 for desegrega-
tion. For large grains � �L� 1� the bulk concentration

retains its initial value and Cs reaches Cs0, in accord-
ance with the case of an ``in®nite'' grain. In the op-
posite case � �L� 1�, the bulk concentration changes

dramatically, and the surface concentration changes
only slightly.
For the analysis of the impurities' segregation on the

surface of a plate possessing ®nite width, Eq. (5) must
be solved in the domain ÿ �L < �x < �L for slab or 0 <
�r < �L for cylindrical or spherical grain subject to
boundary and initial conditions (17)±(19). This

equation was solved by the Laplace transform's
method. The solution is given in Appendix A and
shown in Fig. 5.

We further study the kinetics of surface segregation
on the surfaces of small pores existing in the grain
boundary region [3]. Towards this goal, Eq. (5) subject

to conditions (17)±(19) is solved in the domain 1 >

�r > �a � a=d� for cylindrical or spherical pores. These
solutions are presented in Appendix A and illustrated

in Fig. 6. Their discussion is presented in Section 3.
In order to analyze the in¯uence of the near-surface

region thickness b and Dns on the surface segregation

kinetics, a three-layer model is considered (Fig. 1, ®nite
L ). The ®rst layer is the surface layer of the width d,
the second layer is adjacent to the ®rst and called

``near-surface region'' (b, Dns), and the third is the
bulk region, where the impurities have di�usivity D.
The set of governing equations and boundary con-

ditions are modi®ed appropriately.
Eq. (5) must be solved successively in the bulk and

near-surface regions with respective di�usivities D and
Dns, subject to the conditions of continuity of the con-

centration and its ¯ux at x = b.
The resulting solution is governed by the dimension-

less parameters

s �
�������������
D=Dns

p
, �b � b=d� �31�

and is presented in Appendix A. If s � 1 or �b � 0, the
present solution reduces to the regular planar case,

described by Eqs. (22)±(24).

3. Results

The time dependence of Cs for the simplest case
(semi-in®nite space) is shown in Fig. 2a and b, where

the e�ects of D and K on Cs are shown. Fig. 2a exhi-
bits the in¯uence of the surface reaction coe�cient K
on the segregation kinetics. At the ®nal stage of the

segregation, Cs�t� does not depend upon K. However,
K determines the enrichment rate at the onset of the
segregation process.
Fig. 2b depicts the in¯uence of the bulk di�usion

coe�cient D on the segregation process with all other
parameters ®xed. One can see that at the early stage of
the segregation process, Cs is nearly una�ected by the

di�usion coe�cient. However, at the ®nal stage of the
segregation this coe�cient determines the duration of
the segregation process. Namely, when the di�usion

coe�cient is small (for example, at low temperatures),
the segregation process occurs slowly. In the conditions
of a relatively fast cooling of a specimen to a lower
temperature the surface concentration remains e�ec-

tively frozen. Duration of the segregation process
decreases in the inverse proportion to D, while D�
Kd�: With increasing D, the segregation curve

approaches the exponential form (3) with k � K=d�:
The nondimensional complex m determines the re-

lationship between the bulk di�usion and the surface

reaction rate and, therefore, governs the surface segre-
gation kinetics, which is graphically illustrated in
Fig. 3.

Fig. 2. In¯uence of reaction (a) and di�usion (b) coe�cients

on the segregation kinetics.
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Variation of surface concentration with dimension-

less time t for various values of m is shown in Fig. 3.

One can see that for m � 0:1 the cs�t� curve is very
close to that described by the pure di�usion limited

model (Fig. 3a). When m < 0:1, the process is di�u-

sion-limited and can be described by Eq. (26). As m
increases, the cs�t� curve deviates from the di�usion-

limited behavior. For m01 both mechanisms (di�usion

and reaction) are equally important (Fig. 3b). For m �
10 the segregation±di�usion curve is very close to that

described by the reaction model (Fig. 3c). If m > 10,

then the surface reaction limits the rate of the segre-
gation process, and surface segregation is described by

Eq. (25). For intermediate values of m, the general

reaction±di�usion model of the segregation kinetics
must be applied. Therefore, the ranges of applicability

of the McLean and reaction (Rawlings±du Plessis)

models are established in terms of the parameter m:
Fig. 4 depicts the evolution of bulk concentration

distribution calculated via Eq. (21) for m � 0:1±100:
Fig. 4a exhibits a distribution of dimensionless bulk

concentration g�Cÿ C �=�Csi ÿ Cs0� at several time

instants for m � 1: At the early stage of the segregation

process the deviation of the bulk concentration from C

is signi®cant only in the immediate vicinity of the sur-
face. This deviation monotonously increases and con-

tinuously propagates to the deeper layers of the
material. This stage is characterized by very steep con-

centration gradients at the points adjacent to the sur-

face. After reaching its maximum (see curve t � 1:0� in
the immediate vicinity of the surface the dimensionless

bulk concentration begins to decrease in this near-sur-

face region. This new stage is characterized by ``dissol-
ution'' of bulk concentration nonuniformity in the

material.

Fig. 4b depicts the evolution of concentration at the

point adjacent to the surface for various m: It can be
seen that the maximal di�erence between this concen-

tration and that prevailing far from the surface occurs

approximately at t � m, and the absolute value of this
di�erence decreases with increasing m:
Fig. 4c shows a comparison between the concen-

tration pro®les calculated by the reaction±di�usion

model with m � 10ÿ4 (di�usion-controlled case) and

Fig. 3. Comparison of reaction±di�usion model with pure di�usion and pure reaction limits. (1) Reaction±di�usion model; (2) dif-

fusion model (Eq. (26)); (3) reaction model (Eq. (25)). (a) m � 0:1; (b) m � 1; (c) m � 10:
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the results of Crank's solution for the bulk concen-
tration of impurities

C � C1 erf

�
x

2
������
Dt
p

�
, �32�

derived under the assumption of a pure sink at the sur-
face: C�x � 0� � 0: For comparison purposes it was

assumed that Csi � 0 and that a � g (which is true for
small C1 exp�Esegr=RT �: One can see that these two
models bring to very close concentration pro®les at

t � 10ÿ4, corresponding to extremum value of C�x �
0� curve. For dimensionless times signi®cantly di�ering
from 10ÿ4, C given by our model deviates from that of
Crank's solution.

Fig. 4d compares the concentration pro®les calcu-
lated by the reaction±di�usion model with m � 0:1
(kinetics is partly reaction-controlled) with Crank's sol-

ution. It is seen that in these conditions these two
models yield di�erent concentration pro®les for all
times. However, the values of the ``depth of in¯uence''

of the segregation process as predicted by both models
are similar.
Fig. 4a, c and d show that only a layer of thickness

of the order d�, adjacent to the surface, is signi®cantly

a�ected by the segregation process. Consider now

Fig. 5, which illustrates the in¯uence of the nondimen-

sional grain size �L on the behavior of the segregation
curve. At short times �L does not in¯uence the segre-

gation process. The in¯uence of �L becomes important

at later stages, when deeper material layers become

involved in the segregation process. If �L0d�, or �L01,

the impurities from the whole grain are set in motion
due to the segregation process. As a result, the Cs vs. t

curve becomes sensitive to the limited quantity of the

impurities present in the grain. In the case of small �L

the ®nal bulk concentration of impurities decreases,
and the equilibrium surface concentration decreases

accordingly. However, if �L exceeds 10, major part of

the grain does not take part in the segregation process.

In this case the solution for the ®nite grain reduces to
the curve obtained for the semi-in®nite space. For �L >
10 the assumption of the in®nite source of impurities is

rather satisfactory, and the material is e�ectively in®-

nite. The same comments are applicable to the spheri-
cal grain also (Fig. 5c). However, in this case the e�ect

of size is stronger due to the fact that the speci®c area

of the sphere of diameter 2 �L, equal to 3= �L, is more

than the speci®c area of the slab of thickness 2 �L,
which is equal to 1= �L:

Fig. 4. The evolution of bulk impurities' concentration. (a) m � 1; 1: t � 0:1; 2: t � 1:0; 3: t � 10; 4: t � 100: (b) �x � 0; (c) com-

parison with Crank's expression. m � 10ÿ4: Solid lines: reaction±di�usion model. Dashed lines: Crank's solution; (d) comparison

with Crank's expression. m � 10ÿ1: Solid lines: reaction±di�usion model. Dashed lines: Crank's solution.
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Fig. 6 illustrates the e�ect of the nondimensional

pore radius �a � a=d� on the rate of segregation of

impurities on the surface of a cylindrical or spherical

cavity. The in¯uence of the pore curvature on the seg-

regation kinetics is negligible at the early stage of the

process, when only the impurities molecules nearest to

the surface are involved in the segregation process.

During this stage the surface may be considered as pla-

nar. The Cs vs. t curve has the same form as it does in

the case of semi-in®nite space. As the segregation pro-

cess evolves, the distribution of the impurities concen-

tration in the bulk increasingly in¯uences the

segregation kinetics, and the curves corresponding to

®nite pore radii, deviate from the planar solution.

One can see that the smaller the cavity, the faster

the segregation process (see Fig. 6). For very small

pores � �a40�, the process rate is maximal and entirely

determined by the surface reaction rate (see Eq. (3)).

For relatively large pores � �a� 1�, the in¯uence of the

surface curvature is negligible, Eqs. (22)±(24) can be

applied for the segregation kinetics analysis (as in the

case of planar semi-in®nite space).

4. Discussion

In several works [6,9], it was found that the Cs�t�
curve is likely to obey the

��
t
p

law at small times, as

suggested by Eq. (2) [6]. Our model yields a linear

Cs�t� dependence at small times �cs � mt�: However,

for small m this region is very short, and the beginning

of the segregation curve looks like
��
t
p
: When the

enrichment factor is small (weak segregation), a devi-

ation from the
��
t
p

law has been observed [16±18]. It is
seen from our model that in this case g is also small, m
is large, and the linear region of the Cs�t� curve is

long, which brings about a deviation from the square

root law.

Another case, in which the reaction and di�usion

portions of the segregation curve can be identi®ed, is

the kinetics of segregation on small pores � �a� 1�: For
�a� 1 the segregation kinetics is at least partly reac-
tion-controlled, even though the segregation to the pla-

nar surface in the same system seems to be entirely

di�usion-controlled. In this case all the pure di�usion

models for segregation kinetics cannot predict the

Fig. 5. In¯uence of the grain shape and size on the segregation kinetics. (a,b) Planar grain; (c,d) spherical grain.
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maximal rate of surface enrichment and yield in®nite
enrichment rate in the limit �a41: Our model is,

therefore adequate for describing the segregation kin-
etics on small pores normally present in grain bound-
aries.

In our model a linear form of boundary condition
(7) has been employed via Eq. (10). The applicability
limit of this approximation has the form�����C eq

appr�Cs � ÿ C eq�C s �
C eq�Cs �

������ 1, �33�

where Cs is the current surface concentration. Con-

dition (33) holds when Cs is close to the equilibrium
value (®nal stage of time evolution). If (33) already
holds for Cs � Csi, approximation (10) is valid during

the entire process. It is easy to show that (33) is equiv-
alent to the condition

jCsi ÿ Cs0j
1ÿ Cs0

� 1, �34�

which means that the linear approximation of bound-
ary condition (7) is strictly valid as long as the initial
surface concentration of segregated substance does not

di�er signi®cantly from the equilibrium concentration.
Otherwise, if Eqs. (33) and (34) do not hold and one

is interested in the early stages of the segregation pro-
cess, Eq. (7) can be linearized near the initial surface

concentration:

C eq
appr � Ci � Cs ÿ Csi

gi
, �35�

where

Ci � C eq�Csi, T�, �36�

1

gi
�
�
@C eq

@Cs

�
Csi , T

: �37�

When the entire Cs�t� curve is to be calculated and
(33) does not hold for Cs � Csi, one should solve nu-
merically set of Eqs. (5)±(9) without employing linear-

izations (10) and (35).
Strictly speaking, condition (7) may also become

invalid far from the equilibrium, when Eqs. (33)
and (34) do not hold. Generally, the rate of change

of Cs should be described by a function of �C �x�0,
depending on a parameter C eq�Cs, T �:

dCs

dt
� F

��C�x�0, C eq�Cs, T�
	
: �38�

Fig. 6. The pore shape and size on the segregation kinetics. (a,b) Cylindrical pore; (c,d) spherical pore.
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The speci®c form of this function depends on the
system bulk material Ð segregated substance and

can be determined experimentally. Since the surface
concentration of impurities becomes constant at
equilibrium, the value of the function F = 0 when

�C �x�0 � C eq�Cs, T �: Therefore, function F can be
expanded into the Taylor series around C eq�Cs, T � in
the following form:

F
��C�x�0, C eq�Cs, T�

	 � F 0
��C�x�0ÿC eq�Cs, T�

	
� 1

2
F 00
��C�x�0ÿC eq�Cs, T�

	 2� . . . �39�

where F ' and F 00 are the derivatives of F. In condition
(7) we take only the ®rst term of this expansion. Evalu-
ation of the correction to the solution by accounting

for the higher-order terms in expansion (39) lies

beyond the scope of the present paper. The fact of

mere existence of systems, in which surface segregation
kinetics can be described by Eq. (3) [11±13,6] proves
that the function F may be considered linear, and con-

dition (7) is valid even far from equilibrium.
Below, we use our reaction±di�usion model for

analysis of various experimental data on surface seg-

regation kinetics, available from the literature
[27,28]. Most of the results analyzed refer to segre-
gation of solute molecules on surfaces of single

metal crystals. Some of the presented data are also
compared with McLeans' solution [Eq. (26)] (for T
= 900 K see Fig. 7a, T = 4508C, Fig. 7b).

The parameters m and tsegr � d 2
� =D are calculated by

the least square method to best ®t the experimental
data. The experimental points together with the theor-

etical curves described by Eqs. (22)±(24) are shown in

Fig. 7. (a) Comparison between experimental data on kinetics of sulfur segregation in iron [27] and results of calculations by reac-

tion±di�usion model (at all temperatures) and by McLeans' model (T = 900 K). Experimental results: rhombuses: T = 900 K; cir-

cles: T = 840 K; triangles: T = 810 K; squares: T = 770 K. (b) Comparison between experimental data on kinetics of silver

segregation on copper [28] and results of calculations by reaction±di�usion model (at all temperatures) and by McLeans' model (T

= 4508C). Experimental results: squares: T = 4508C; circles: T = 4168C; triangles: T = 3908C.
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Fig. 7. The surface crystallographic orientation for

each set of experimental data is ®xed. For example,

Fig. 7b depicts the data on segregation kinetics of the

Ag to the (111) Cu surface. Militzer et al. [27] reported

only the relative Auger peak ratios for segregation of S

on the iron surface. Since it was not possible to derive

the exact surface coverages, a one-to-one relation has

been used as a ®rst approximation. We expect that this

could reduce the accuracy of determination of m and

tsegr in this speci®c case. It is clearly seen that exper-

imental results are satisfactorily correlated by the com-

puted curves. Eqs. (14c) and (20) relate the material

parameters K and d� to the parameters m and tsegr:
Thus, experimental data on the kinetics of segregation

may also be used to determine these material par-

ameters. Tables 1 and 2 contain the nondimensional

adjustable parameters m and tsegr and the segregation

length d� and the surface reaction coe�cient K, calcu-

lated on their basis. The di�usion coe�cients were

taken from the reference data.

Eugene et al. [28] discuss their experimental data in

terms of two-dimensional phase transition at the sur-

face. In this case, the role of surface reaction is very

important. The relatively large values of m calculated

using their data for the kinetics of silver segregation

on copper (see Table 2) can implicitly con®rm this con-

clusion.

In the following we discuss the di�erence between

the di�erential enrichment factor g, appearing in Eq.

(10), and conventional enrichment factor a [6]. Con-

sider, for example, S segregation in Fe at 900 K, when

the Si segregation can be ignored [27]. Assume one

monolayer enrichment of S at the surface, which

suggests C1 exp�Esegr=RT � � 1, or, for C1 �
1:7eÿ 5, Esegr � 80 kJ/mol K. Then the actual enrich-

ment coe�cient will be a � 1=C1 � 58,823: From the
®t value d� � 299:6 nm and d � 0:143 nm for (100)

surface one can derive g � 2095: If one attempts to
identify g with a, one arrives at a surprising conclusion
that the equilibrium surface coverage must be 0.03

monolayers, which is too small for the observed Auger
signal. However, one should note that the di�erential
enrichment factor, g, can generally be less than a:
Using the above value of g � 2095, we can use Eq.
(13) to derive the segregation energy

Esegr � RT ln
g

C 21
� 221:6 kJ=mol K, �40�

which is not far from the reported value 190 kJ/mol
[29].
Fig. 8a presents the Arrhenius plots for the surface

reaction coe�cient K for two sets of data. For calcu-
lation of the time variation of surface concentration at
intermediate temperatures, the temperature dependen-

cies of K and d� are needed. For this purpose we corre-
lated K(T) by the equation K � K0 exp�ÿQK=RT �
with QK � 236:37 kJ/mol, K0 � 3:01� 103 m/s for sul-
fur segregation in the Fe±6at.%Si system (Fig. 7a,

Table 1), QK � 126:6 kJ/mol, K0 � 3:19� 10ÿ2 m/s for
silver segregation on the surface of copper (Fig. 7b,
Table 2). The Arrhenius behavior of K is the conse-

quence of the fact that K expresses the mobility of
impurity atoms relative to bulk-surface transition and
it is expected to exhibit the behavior, similar to that of

the di�usion coe�cient.
Fig. 8b presents the Arrhenius plots for the segre-

gation length d�: This quantity characterizes the length

scale on which the volume concentration of impurities
is a�ected by the change of their surface concentration.
One can see that d� generally exhibits an Arrhenius
behavior. In the case of sulfur segregation in the Fe±

6at.%Si system the segregation length d� can be calcu-
lated as d� � d�0 exp�ÿQd=RT � with Qd � 90:61 kJ/
mol, d�0 � 4:95� 107nm. For silver segregation on the

surface of copper, d� is almost constant. One may be
tempted to express this parameter via the surface layer
thickness d and parameter g: However, parameter g is

very sensitive to the accuracy of determination of the
segregation isotherm. This parameter depends in a
complicated manner on the material temperature and

on the concentration of other impurities present in the

Table 1

Parameters controlling the kinetics of sulfur segregation in

iron [27]

T (K) D (m2/s) m tsegr (h) d� (nm) K (m/s)

1 900 1.911� 10ÿ21 0.889 1.30 299.6 7.174� 10ÿ11

2 840 5.912� 10ÿ19 1.701 4.03 92.65 3.753� 10ÿ12

3 810 9.208� 10ÿ20 0.600 18.00 77.25 1.986� 10ÿ12

4 770 6.745� 10ÿ21 0.600 55.00 36.54 3.076� 10ÿ13

Table 2

Parameters controlling the kinetics of silver segregation in copper [28]

T (8C) D (m2/s) m tsegr (min) d� (nm) K (m/s)

1 450 5.179� 10ÿ19 2.755 2.180 8.200 2.284� 10ÿ11

2 416 1.0471� 10ÿ19 2.020 5.010 5.610 9.234� 10ÿ12

3 390 2.761� 10ÿ20 0.991 40.592 8.200 3.398� 10ÿ12
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material and their segregation energies (multicompo-

nent segregation, see [25]). The thickness of the surface

layer may also vary with temperature for certain sys-

tems [30,31].

Obviously, not every data set can be used for deter-

mination of the kinetic parameters. For example, the

data for Si segregation in Fe±3wt.%Si collected by de

Rugy and Viefhaus [9] have been described by Crank's

expression (2) almost up to the equilibrium. In terms

of our model parameters, we can conclude from the

analysis of these data that in these conditions m < 0:1,
or K > 0:1D=d�: None of the models discussed here

can be used for determination of kinetic parameters in

the cases of surface reaction of higher orders, e.g. as

described in Bezuidenhout et al. [1].

One can use our model in combination with Arrhe-

nius plots in Fig. 8a and b to predict surface segre-

gation rate at di�erent temperatures. Indeed, one can

®t Eqs. (22)±(24) to several segregation curves for a

certain system, measured at di�erent temperatures, to
calculate the activation energies and preexponential

multipliers for K�T � and d��T �-dependencies. These
parameters may be used to extrapolate K and d� for
other temperatures and predict the corresponding seg-

regation kinetics curves. The derived parameters allow
to predict the evolution of the bulk concentration
within the material, and also to qualify the in¯uence of
the shapes of grains and pores on the intergranular

segregation kinetics.

5. Conclusions

A theoretical model describing the segregation kin-
etics is developed, accounting for bulk di�usion of

impurities and their segregation. At short times
�t� d�=K �, or for D� d�K this model reduces to
reaction rate limited model [6]. At long times

Fig. 8. (a) Arrhenius plot for K. (b) The Arrhenius plot for d�: Circles: data taken from Table 1; squares: data taken from Table 2.
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�t� d 2
� =D�, or for D� d�K the segregation kinetics

can be described by McLean's model with a substi-

tuted by g:
The e�ect of grain size, L, is established by the par-

ameter L=d�: When L� d� the grain size may be con-

sidered as in®nite.
The pore size, a, a�ects the segregation process

when a � O�d��: When a� d� the pore may be con-

sidered as plane surface. When a� d�, the pore size
also does not a�ect the segregation process. In this
case, Cs is reaction±controlled (changes at the time

scale d�=K� and given by Eq. (25).
The predictions of the reaction±di�usion model

agree well with the experimental data on segregation
kinetics. The comparison between the results of calcu-

lations and experimental data allows to determine the
physical parameters, controlling the segregation kin-
etics, namely, K and d�: These parameters were found

to exhibit the Arrhenius-like temperature behavior.
These parameters can be used for prediction of the
Cs�t� curves for various thermal regimes and intergra-

nular geometries.
Estimation of validity limits of the linearized reac-

tion±di�usion model has been made. When the linear-

ization assumed in Eqs. (10) and (35) is invalid, the set
of nonlinear Eqs. (5)±(9) should be solved.

Appendix A. Solutions for surface concentration time

variation for various geometries

In this Appendix, the Laplace images of the bulk
and surface concentrations evolution are presented.
The Laplace image of bulk concentration is denoted

by ĉ� �x, s� for Cartesian geometry or ĉ��r, s� for cylindri-
cal or spherical geometries and the Laplace image of
the surface concentration is ĉs�s�, where s is the

Laplace transform variable.
In the case of in®nite slab, the Laplace image of the

concentration ®eld in the bulk takes the form

ĉ� �x, s� � ÿ1
g

(
exp

�� �Lÿ �x� ��
s
p �
� exp

�� �xÿ �L� ��
s
p �

exp
ÿ

�L
��
s
p �
ÿ exp

ÿ
ÿ �L

��
s
p �

� 1��
s
p ÿ

ms� j�s� ��
s
p � 1

� ) �A1�

and the image of surface concentration variation is

ĉs�s� � 1

s
ÿ
ms� j�s� ��

s
p � 1

� , �A2�

where

j�s� � coth
ÿ

�L
��
s
p �

: �A3�

An alternative geometry for analyzing the in¯uence

of grain size upon the segregation kinetics is an in®nite
cylinder with radius L. In this case, Eq. (5) must be
written in cylindrical coordinates. Eq. (5) holds for 0

= r = L, and the boundary conditions (6) and (7)
hold at the surface r = L.
The Laplace image of the bulk concentration of

impurities is described by

ĉ��r, s� � ÿ1
g

I0
ÿ
�r
��
s
p �

j�s���
s
p ÿ

ms� j�s� ��
s
p � 1

� , �A4�

and the image of surface concentration is described by

(A2) with

j�s� � I0
ÿ

�L
��
s
p �

I1
ÿ

�L
��
s
p � �A5�

where I0 and I1 are the modi®ed Bessel functions of
the ®rst kind. This solution has limting form Cs4Csi

��Cs0ÿCsi ��1� 2= �L�ÿ1 as t41:
In the model of spherical grain, the governing

equations and boundary conditions must be modi®ed
for the spherical coordinate system. Their solution in

the Laplace transform domain can be written down as:

ĉ��r, s� � ÿ1
g

sinh
ÿ
�r
��
s
p �

�r
��
s
p j�s���

s
p ÿ

ms� j�s� ��
s
p � 1

� , �A6�

while the surface concentration can be described by

(A2). In the case of spherical grain

j�s� �
�L
��
s
p

�L
��
s
p

coth
ÿ

�L
��
s
p �
ÿ 1

�A7�

The solution has the limiting form Cs4Csi� �Cs0 ÿ
Csi ��1� 3= �L�ÿ1 as t41:
In the case of cylindrical pore the di�usion equation

will be solved in cylindrical coordinates in the domain
rRa: Boundary conditions (6) and (7) hold at the pore
surface r = a. Then the bulk concentration of impuri-

ties can be calculated from

ĉ��r, s� � ÿ1
g

K0

ÿ
�r
��
s
p �

j�s���
s
p ÿ

ms� j�s� ��
s
p � 1

� �A8�

The surface concentration can be calculated from
(A2) with

j�s� � K0

ÿ
�a
��
s
p �

K1

ÿ
�a
��
s
p � �A9�

where K0 and K1 are the modi®ed Bessel functions of
the second kind. It can be shown that for �a41,

j�s� � 1, and the solution for surface concentration
history reduces to (22), valid for semi-in®nite case. If,
conversely, the pore is very small, j�s� � 0, and the
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time variation of surface concentration can be
described by Eq. (25).

In the case of the spherical pore the di�usion
equation is solved in spherical coordinates in the
domain rra with the surface described by r = a.

The solution of this problem in the Laplace's
domain is

ĉ��r, s� � ÿ1
g

exp
ÿÿ �r

��
s
p �

�r
��
s
p j�s���

s
p ÿ

ms� j�s� ��
s
p � 1

� , �A10�

j�s� � �a
��
s
p

�a
��
s
p � 1

, �A11�

and the surface concentration can be described by
(A2).
In the cases when the near-surface di�usion di�ers

signi®cantly from the bulk di�usion, the concentration
distribution within the material is described by

ĉ� �x, s� � 1

g
Y1�s, �x� j�s���

s
p ÿ

ms� j�s� ��
s
p � 1

� , 0RxRb:

�A12�

ĉ� �x, s� � 1

g
Y2�s, �x� j�s���

s
p ÿ

ms� j�s� ��
s
p � 1

� , x > b:

�A13�

where

Y1�s, �x� �

s
exp

ÿÿ �xs
��
s
p �ÿ exp

ÿ
�xs

��
s
p �1ÿ s

1� s
exp

ÿ
ÿ 2 �bs

��
s
p �

1� 1ÿ s
1� s

exp
ÿ
ÿ 2 �bs

��
s
p �

�A14�

Y2�s, �x� �
2s exp

ÿÿ �x
��
s
p �

�1� s�exp
�
ÿ �b

��
s
p �1ÿ s�

�
ÿ �1ÿ s�exp

�
ÿ �b

��
s
p �1 � s�

�
�A15�

The surface concentration kinetics is described by

(A2) with

j�s� � s
1ÿ 1ÿ s

1� s
exp

ÿ
ÿ 2 �bs

��
s
p �

1� 1ÿ s
1� s

exp
ÿ
ÿ 2 �bs

��
s
p � �A16�

The above Laplace images can be inverted with the
help of the known analytical methods. The resulting
solutions can be obtained in the form of in®nite series.

We, however, inverted the images numerically using
the NAG software on TX work station.
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